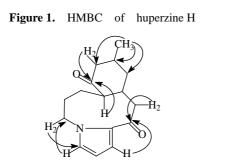
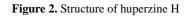
Huperzine H, a New Lycopodium Alkaloid from Huperzia serrata

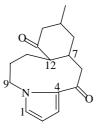
Wen Yun GAO, Yi Ming LI, Bao De WANG, Da Yuan ZHU*

State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031

Abstract: A new lycopodium alkaloid with a novel skeleton was isolated from *Huperzia serrata*. Its structure was determined on the basis of spectral evidences.


Keywords: Huperzia serrata (Thunb.) Trev.; huperzine H; isolation; structure.


Huperzia serrata (Thunb.) Trev. is one of the most commonly used traditional Chinese herbal medicines for the treatment of contusions, strains, swellings and schirophremas¹ *etc.*. Many lycopodium alkaloids have been isolated^{2, 3} from it including huperzine A, a compound which has shown potential effects on Alzheime disease. In our investigations, three new lycopodium alkaloids were obtained and reported^{4,5}. This paper deals with the identification of huperzine H— a new lycopodium alkaloid with a novel skeleton.


Huperzine H is colorless needles with $[\alpha]_D - 216 (c \ 0.02, CHCl_3)$, mp. 168-170 °C. It gave positive reaction with KBiI₄ indicating that the compound was an alkaloid. Its IR spectrum showed the absorption bands of carbonyl group (1710.5cm⁻¹⁾, α , β -unsaturated carbonyl group (1685.3cm⁻¹⁾ and double bonds (1547.6cm⁻¹⁾. The HREIMS of it showed that its molecular composition was C₁₆H₂₁NO₂. The EIMS possessed a molecular ion at m/z 259 (34%) and a prominent peak at m/z 231 (44%) [M-28], but no peak at [M-57] or [M-71] and this evidence indicated that the compound did not belong to lycodine group or lycopodine group². The ¹H-NMR of huperzine H (**Table 1**) showed that it possessed 21 protons including three olefinic signals at δ 6.99 (1H, *dd*, *J*=4.1, 2.1), 6.77 (1H, *dd*, *J*=4.4, 2.1) and 6.18 (1H, *dd*, *J*=4.4, 4.1) and a methyl signal at δ 0.96 (3H, *d*, *J*=7.2). The ¹³C-NMR of this compound (**Table 1**) showed 16 signals including two carbonyl groups (δ 209.55 and 191.76), four olefinic carbons [δ 135.84 (*s*), 129.31 (*d*), 118.36 (*d*) and 109.53 (*d*)] and 10 saturated carbons (CH×3, CH₂×6 and CH₃×1). The HMQC and ¹H- ¹H COSY of huperzine H showed that it consisted of the segments given below:

Wen Yun GAO et al.

And this two segments accompanied by two carbonyl groups and a nitrogen atom can be connected as below by the HMBC of the compound. The HMBC results see **Figure 1**. Thus, the structure of huperzine H is characterized (see **Figure 2**). It is a new lycopodium alkaloid with a novel skeleton.

Table 1. INVILLUATE OF HUDGELING IT	Table 1.	NMR	data	of hu	perzine H
--	----------	-----	------	-------	-----------

Site	$\delta_{\rm H}$ (multi., Hz)	H-H COSY	HMQC (δ_C , DEPT)
1	6.77 (1H, dd, 4.4, 2.1)	2,3	129.31 (d)
2	6.18 (1H, dd, 4.1, 4.1)	1,3	109.53 (d)
3	6.99 (1H, dd, 4.1, 2.1)	1,2	118.88 (d)
4			135.84 (s)
5			191.76 (s)
6	a. 3.02 (1H, dd, 12.5, 9.5)	6b, 7	47.42 (<i>t</i>)
	b. 2.66 (1H, brd, 12.5)	6a	
7	2.36 (1H, m)	6a, 8b, 12	41.33 (d)
8	a. 1.88 (1H, dd, 12.11, 4.2)	7, 15,	39.38 (<i>t</i>)
	b. 1.82 (1H, <i>m</i>)		
9	a. 4.46 (1H, brt, 13.4)	9b, 10a	48.63 (<i>t</i>)
	b. 4.21 (1H, dm, 13.4)	9a, 10b	
10	a. 1.79 (1H, <i>m</i>)	9a, 10b, 11	32.18 (<i>t</i>)
	b. 1.56 (1H, <i>m</i>)	9b, 10a, 11	
11	a. 2.76 (1H, dd, 16.0, 3.4)	10a, 11b, 12	21.70 (<i>t</i>)
	b. 1.04 (1H, brd, 16.0)	10b, 11a, 12	
12	2.05 (1H, brd, 12.3)	7, 11a, 11b	55.74 (d)
13			209.55 (s)
14	a. 2.48 (1H, dd, 10.6, 5.9)	14b, 15	47.79 (<i>t</i>)
	b. 2.22 (1H, <i>d</i> , 10.6)	14a, 15	
15	2.42 (1H, <i>m</i>)	8, 14, 16	30.21 (d)
16	0.96 (3H, <i>d</i> , 7.2)	15	19.03 (q)

Huperzine H

Experimental

General Procedures

Optical rotation was determined on a JASCO DIP-181 polarimeter. IR spectrum was recorded on a Perkin-Elmer 599B spectrophotometer. 1D and 2D-NMR were recorded with a Brucker AM-400 NMR spectrometer in $CDCl_3$. MS were obtained with a MAT-711 and a MAT-95 mass spectrometers. Column chromatography was carried out on silica gel (200-300 mesh) and neutral Al_2O_3 (200-300 mesh). Precoated plates of silica gel (HSGF₂₅₄₎ and neutral Al_2O_3 were used for detection.

Plant Material

The whole plants of *Huperzai serrata* were collected at Xianju, Zhejiang province in August, 1997 and were identified by Dr. Xiaoqiang Ma of Shanghai Institute of Materia Medica, Chinese Academy of Sciences. A voucher specimen has been deposited at the herbarium of Shanghai Institute of Materia Medica, Chinese Academy of Sciences (No. 97-36).

Extraction and Isolation

About 50 kg of dry plant was extracted with 1% HCl for 5 times. The combined HCl extracts were concentrated under vaccum to about 2 L and alkalized with concentrated ammonia water to pH 9~10. The alkalized solution was then extracted repeatedly with CHCl3 (5 × 1 L) until no alkaloids detectable in water layer. After CHCl3 was removed under vaccum, the procedure described above was repeated once more and about 5 kg of crude alkaloids were obtained which were submitted to silica gel columns [$(20 \times 80 \text{ cm}) \times 5$] and eluted with CHCl3-acetone from 10 : 1 to 1 : 1, then with methanol. Concentration of the methanol fraction under vaccum gave a mixture about 50 g in weight which was chromatographed repeatedly on neutral Al2O3 (CHCl3-acetone) and silica gel (CHCl3-CH3OH-NH4OH) columns (3 × 50 cm) to give huperzine H (7 mg).

Huperzine H was obtained as colorless prism, mp. 168~170 oC, C16H21NO2; $[\alpha]D= -216$ (c 0.02, CHCl3); IR v ^{KBr} cm⁻¹: 1710.5 (C=O), 1685.3 (C=O), 1547.6 (C=C), 1123.6; 1D and 2D-NMR data see Table 1; HREIMS (m/z): found 259.1564 (C16H21NO2, calcd 259.1567), 231.1620 (C15H21NO, 231.1618), 203.1663 (C14H21N, 203.1669); EIMS (m/z): 259 [M+] (34), 231 (44), 203 (16), 162 (16), 133 (18), 120 (31), 94 (31),81 (100). Wen Yun GAO et al.

References

- 1. Jiangsu New Medical College, The Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Press, Shanghai, 1985, 1138.
- X. H. Luan, Z. L. Xu, Acta Pharm. Sin., 1986, 21, 310, 386. 2.
- 3.
- W. A. Ayer, L. S. Trifonov, *The Alkaloids*, Academic Press, New York, **1994**, 45, 233.
 D. Y. Zhu, M. F. Huang, B. D. Wang, X. M. Kong, *Chin. J. Appl. Environ. Biol.*, **1996**, 2 (4), 4. 352.
- 5. B. D. Wang, S. H. Jiang, W. Y. Gao, D. Y. Zhu, Acta Bot. Sin., 1998, 40 (9), 842.

Received 21 June 1998 Revised 20 April 1999

466